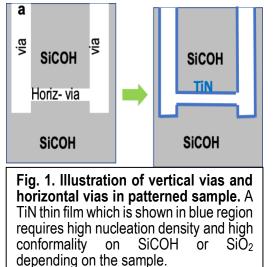
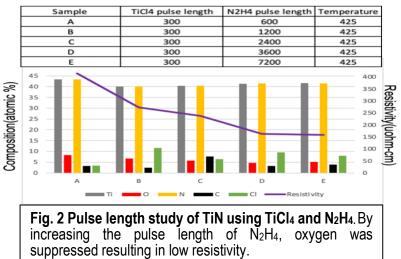
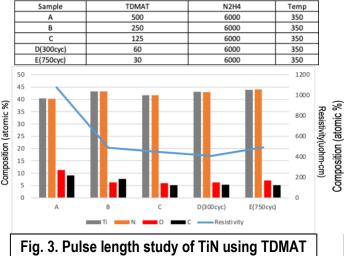
Low Resistivity Titanium Nitride Thin Film Fabricated by Atomic Layer Deposition with TiCl₄ and Metal-Organic Precursors in Horizontal Vias

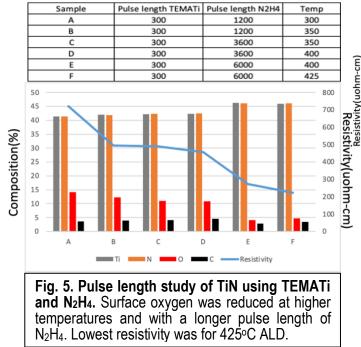

Cheng-Hsuan Kuo¹, Aaron J Mcleod², James Huang¹, Victor Wang¹, SeongUK Yun², Zichen Zhang¹, Jeffrey Spiegelman³, and Andrew C. Kummel² ¹Materials Science and Engineering Program, University of California, San Diego

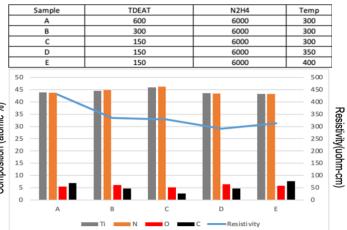

²Department of Chemistry and Biochemistry, University of California, San Diego^{; 3}Rasirc, San Diego

Titanium nitride (TiN) thin films are utilized as diffusion barriers for Co and W metal layers as well as the gate metal barrier in CMOS and memory devices due to the material's low resistivity; TiN is also used as a coating for hard disk drives^[1]. Low resistivity TiN in commercial devices has been deposited by plasmaenhanced ALD (PE-ALD) and by physical vapor deposition. However, for high aspect ratio features and horizontal vias, deposition by thermal ALD is needed to enhance the conformality of the deposition process. In the present work, it is shown that the resistivity can be decreased below 220 u Ω -cm with a non-halogenated precursor at 425 °C by using a Ti precursor with high thermal stability and by reducing the oxygen and carbon contents in the films using a highly reactive co-reactant, anhydrous hydrazine (N₂H₄).


Titanium tetrachloride (TiCl₄), as well as three metal-organic precursors and anhydrous hydrazine (N_2H_4 , Rasirc, Brute Hydrazine), were employed with ultra-high purity nitrogen purge gas. Films formed with the three halogen-free precursors, TDMAT (tetrakis(dimethylamino)titanium), TDEAT (tetrakis(diethylamino)titanium), and TEMATi (tetrakis(ethylmethylamido)titanium) were compared to TiCl₄ for resistivity and conformality. The TiN ALD chamber was connected to an *in-situ* Auger electron spectrometer (RBD Instruments), which determined the atomic composition of ALD TiN. Pulse lengths and purge times were optimized on HF-cleaned Si (100) or degreased SiO₂. For TiCl₄ the optimized deposition temperature was 425 °C and the optimal pulse times were 300 ms for TiCl₄ and 3600 ms for N₂H₄, but for the metal-organic precursors, different optimized pulsed lengths and deposition temperatures were needed. Fourpoint probe (Ossila) measurements were performed to determine the resistivity of TiN thin films on degreased SiO₂ substrates. Nanoscale patterned samples with horizontal vias (aspect ratio: 1:5) were used to verify the conformality of the low resistivity TiN thin films. TEM was employed to analyze the conformality of TiN thin films. Fig. 1 illustrates the structure of horizontal vias in the patterned samples. As shown by the blue lines, the goal of the process was to conformally deposit 4 nm TiN thin films on all the walls.

Comparisons of TiN using N_2H_4 with TiCl₄, TDMAT, TDEAT, and TEMATi using in-situ Auger and ex-situ resistivity are shown in Fig 2, 3, 4, and 5. The data in Fig 2 for TiCl₄ was employed as a benchmark; the low resistivity was ascribed to the high deposition temperature (425 °C) and low O and C contaminant content allowing for good crystalline structures. Note, the resistivity was only constant for N_2H_4 pulse lengths greater than 3.6s consistent with the need for excess N_2H_4 to reduce O and Cl contaminants.

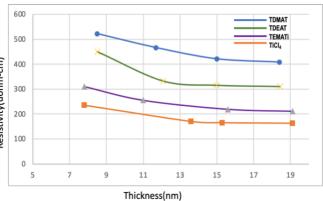


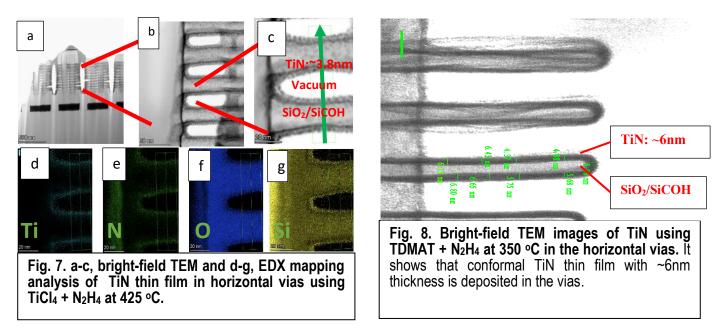


978-1-6654-8646-0/22/\$31.00 ©2022 IEEE

and N_2H_4 . Surface carbon was reduced for a shorter pulse length of TDMAT. However, to reach a similar thickness, extra cycles were needed.

Fig. 4. Pulse length and deposition temperature study of TiN using TDEAT and N₂H₄. At 350°C and 150ms pulse length of TDEAT, the lowest resistivity of TiN was observed.




Fig. 6. Resistivity vs. Thickness of ALD TiN using different Ti precursors. All precursors had the same trend: as the thickness increased, the resistivity decreased and became stable above 15nm. TiCl₄ had the lowest resistivity ~160 u Ω -cm. For metal-organic precursors, TEMATi had the lowest resistivity ~220 u Ω -cm

The deposition of TiN using TDMAT at 350 °C is shown in Fig. 3; this low temperature was needed to prevent decomposition and carbon contamination. At shorter TDMAT pulse lengths, the TiN resistivity was reduced due to the decrease in carbon content. Even for optimized pulse lengths, the surface oxygen and carbon for TDMAT based films are greater than for TiCl₄ based films. The data shows that TDMAT is a poor precursor for thermal TiN ALD because it cannot be employed at a sufficiently high temperature which are hypothesized to be required for a good crystalline structure.

TDEAT has higher temperature stability (350 °C) than TDMAT so it was tested at 350 °C and 400 °C as shown in Fig 4. While the TDEAT films had lower resistivity than TDMAT films at 350°C, the TDEAT film resistivity increased for 400°C deposition temperature due to the high carbon content resulting from the decomposition of the TDEAT precursor at 400°C (note higher C content in experiment E).

The optimal metal-organic precursor was found to be TEMATi as shown in Fig 5. TEMATi is still thermally stable at 425 °C; therefore, it is hypothesized that the crystallinity can be improved relative to TDEAT or TDMAT by higher temperature processing without carbon incorporation. It is noted that the residual C and O in the optimized TEMATi + N₂H₄ films are comparable to that in the optimized TiCl₄ + N₂H₄ films. A comparison of resistivity for TiN using TiCl₄ as well as metal-organic precursors is shown in Fig. 6. As the thickness decreased, resistivity increased, consistent with surface oxidation and surface scatting in the thin films. Among all metal-organic precursors, TEMATi had the lowest resistivity, ~220 uΩ-cm at 425 °C.

As shown in Fig 7, a conformal TiN thin film (~3.8nm) was deposited in horizontal vias using TiCl₄ + N₂H₄ at 425 °C. EDX results support that a TiN thin film was grown on the walls in the horizontal vias. Bright-field TEM (BF-TEM) is shown in Figs 7 a-c. EDX mapping showed that the fin was SiO₂/SiCOH and the thin film conformally grown in the horizontal via was TiO_xN_y (Fig.7 d-g). BF-TEM images of TiN using TDMAT + N₂H₄ at 350 °C are shown in Fig.8. Conformal TiN was again deposited on the fins with thickness around 6 nm. The TEM images of other metal-organic precursors will be presented.

Previously Wolf *et al.* demonstrated 400 °C, ALD of TiN with TiCl₄ and N₂H₄ with a resistivity of 500 u Ω -cm^[2]. The lowest resistivity thermal ALD TiN films reported using a metal-organic precursor employed TDEAT and NH₃ and had 450 u Ω -cm resistivity^[3]. Elam et. al. synthesized TiN using TDMAT and NH₃ had 10000 u Ω -cm^[4]. The lowest resistivity PEALD TiN films reported using a metal-organic precursor employed TDMAT and NH₃ had 180 u Ω -cm resistivity^[5]. The lowest resistivity thermal ALD TiN films reported using a TiCl₄ and NH₃ had 120 u Ω -cm resistivity but employed a toxic chemical, H₂S, to minimize the residual Cl^[6]. Therefore, the present work with TEMATi + N₂H₄ at 425 °C showing resistivity below 220 u Ω -cm represents the lowest reported TiN resistivity for thermal ALD with a non-halogenated precursor. The reported ALD films using TiCl₄ and N₂H₄ represent the lowest reported TiN resistivity for thermal ALD with a halogenated precursor while avoiding the use of H₂S.

Acknowledgment: Special thanks to Micron for the patterned samples.

[5] Microelectronic Engineering, 86 (2009) 72-77; [6] ACS Appl. Electron. Mater. 2021, 3, 2, 999–1005

^[1] C. H. Ahn. et al. Metals and Materials International, 7 (2001); [2] Steven Wolf et al. Applied Surface Science 462 (2018)

^[3] ECS Transactions, 22 (1) 167-173 (2009); [4] Thin Solid Films 436 (2003) 145–156